

A Watershed for Life

Optimization of water quality sampling and load estimation modeling in the Lake Simcoe watershed:

Evaluations using a continuous phosphorus dataset

Eavan M. O'Connor, Lance Aspden, Jennifer G. Winter and David Lembcke January 20, 2015

Sharing Loading Estimation Experiences Workshop

Guelph

Phosphorus Loads

- Report on Phosphorus Loads to Lake Simcoe
- Tributaries provide about 60% of load on average

Tributary Phosphorus Loads

- A need to evaluate a range of **sampling scenarios**
- A need to evaluate a range of load estimation models
- Critical to optimize **both** of these elements to make accurate assessments of loads
- Compare and evaluate against a measured annual tributary load ("Actual" load)

Study Areas

Two large river systems in the Lake Simcoe Watershed1) Beaver River - mainly agricultural (63% agriculture)2) East Holland River - highly urbanized (22% urban)

- Daily and episodic water quality samples were collected for a full year at each station
- Paired with continuous flow data
- Calculated an "actual" annual tributary load!

- The continuous TP record was artificially reduced to represent a variety of sampling scenarios.
- Various load estimation methods were then applied to these sampling simulations.

- The continuous TP record was artificially reduced to represent a variety of sampling scenarios.
- Various load estimation methods were then applied to these sampling simulations.

- The continuous TP record was artificially reduced to represent a variety of sampling scenarios.
- Various load estimation methods were then applied to these sampling simulations.

Methods - Sampling Scenarios

1	 Routine Sampling: Biweekly in the ice-free seasons, triweekly in the winter. Plus event sampling.
2	Weekly (same day every week): Mondays Wednesdays
3	Biweekly with intense event sampling: • Wednesdays (observed more events)
4	Biweekly with partial event sampling (peak only): • Wednesday
5	Monthly with intense event sampling:
6	Biweekly (same day every 2 weeks): Mondays Wednesdays
7	Stratification by season

Load Estimation Methods

1. Midpoint method

Currently used

2. Beale Ratio Estimator

AVG Daily Load (kg) * [AVG Annual Q (m³/s)/AVG Sampled Q (m³/s)]

3. Regression

Calculates daily load using linear relationship

10

Lake Simcoe Region Conservation Authority • A Watershed for Life

Load Estimation Methods

1. Midpoint method

Currently used

2. Bearle Ratio Estimator AVG Daily Load (kg) * [AVG Annual Q (rg/\$/s)] AVG Sampled Q (m3/s)]

3. Regression Calculates daily load using linear relationship

Lake Simcoe Region Conservation Authority • A Watershed for Life

Beale Ratio and Regression

Assumptions:

1.Significant slope and good r² of concentration versus flow2.Sample across range of flows and conditions

FLUX software used for calculating these loads. Other methods available too (averaging, etc).

Lake Simcoe Region Conservation Authority • A Watershed for Life

12

Beale Ratio and Regression

Assumptions:

Significant slope and a bod r² of concentration versus flow Sample across range of flows and conditions

FLUX software used for calculating these loads. Other methods available too (averaging, etc).

Lake Simcoe Region Conservation Authority • A Watershed for Life

13

Beale Ratio and Regression

Assumptions:

Sumptions:
 1.Significant slope and a condition versus flow
 2.Sample across range of flows and conditions

Potential:

- Seasonal or hydrograph stratification
 - May be suitable using long-term data
 - Potentially less intensive sampling required compared to midpoint

FLUX software used for calculating these loads. Other methods available too (averaging, etc).

Beaver River – Autosampler dataset

- Agricultural subwatershed
- Long periods of elevated flow
- High concentrations at the beginning of flow events
- Concentrations drop out after the peak
- High loads at beginning of storm events
- High summer concentrations, low flow, low loads

Lake Simcoe Region Conservation Authority • A Watershed for Life

Results of Midpoint Method – Beaver River

1	 Routine Sampling: Biweekly in ice-free seasons, triweekly in the winter. Plus event sampling. 	5106
2	Weekly (same day every week): Mondays Wednesdays 	3187 3194
3	Biweekly with intense event sampling:Wednesdays (observed more events)	<u>3545</u>
4	Biweekly with partial event sampling: • Wednesday	<u>3570</u>
5	Monthly with intense event sampling:	4005
6	Biweekly (same day every 2 weeks): Mondays Wednesdays 	<u>3493</u> <u>3416</u>
Actual Load (kg)		3430

Re	Results of Midpoint Method – Beaver River			
1	 Routine Sampling: Biweekly in ice-free seasons, triweekly in the winter. Plus event sampling. 	5106		
2	Weekly (same day every week): Mondays Wednesdays 	3187 3194		
3	Biweekly with intense event sampling: • Wednesdays (observed more events)	<u>3545</u>		
4	Biweekly with partial event sampling: • Wednesday	<u>3570</u>		
5	Monthly with intense event sampling:	4005		
6	Biweekly (same day every 2 weeks): Mondays Wednesdays 	<u>3493</u> <u>3416</u>		
Actual Load (kg)		3430		

Routine Sampling Scenario – Midpoint Method Load Calculation

Beaver River

- Sampled at beginning/peak of flow events when concentrations were high
- Overestimates of concentrations

Routine Sampling Scenario – Midpoint Method Load Calculation

Beaver River

- Residuals (difference between observed and estimated daily loads)
- Overestimation of loads

Biweekly Sampling Scenario – Midpoint Method Load Calculation Beaver River

- Biweekly sampling on Wednesdays had most accurate annual load (14kg from actual load)
- False-positive result! overestimation = underestimation (not reliable).

Lake Simcoe Region Conservation Authority • A Watershed for Life

20

Better characterization of the storms produced good annual load (100kg off) and better results on a daily basis.

21

Lake Simcoe Region Conservation Authority • A Watershed for Life

East Holland River - Autosampler Dataset

- Urban subwatershed
- Short intense peaks, numerous events in the year
- Concentrations rise and fall similarly to the hydrograph
- Most loads occur during high flow events
- High summer concentrations, low flow, low loads

Lake Simcoe Region Conservation Authority • A Watershed for Life

Results of Midpoint Method – East Holland River

1	 Routine Sampling: Biweekly in the ice-free season triweekly in the winter. Plus event sampling. 	<u>5380</u>
2	Weekly (same day every week): Mondays Wednesdays 	4318 5144
3	Biweekly with intense event sampling:Wednesdays (observed more events)	<u>6736</u>
4	Biweekly with partial event sampling: • Wednesday	<u>7135</u>
5	Monthly with intense event sampling:	7952
6	Biweekly (same day every 2 weeks): Mondays Wednesdays 	4386 5244
Actual Load (kg)		6325

Routine Sampling Scenario – Midpoint Method Load Calculation East Holland River

- Flashy urban system, hard to sample every storm!
- Routine sampling consistently underestimated phosphorous load (1000 kg/yr)!

Biweekly with Intense Event Sampling Scenario – Midpoint Method Load Calculation

East Holland River

- Some over and under estimations but not extreme (±50 kg).
- Biweekly w/ intense event sampling was the best sampling scenario for East Holland (+400 kg/yr)

Lake Simcoe Region Conservation Authority • A Watershed for Life

25

Summary

Beaver River (agricultural)

Routine sampling scenario lead to considerable overestimation of P load!

East Holland River (urban)

Routine sampling scenario lead to moderate underestimation of P load!

Best results for both systems:

- Sampling regimen:
 - Biweekly plus intense event sampling
- Load estimation method:
 - Midpoint

What it means for our sampling program:

- Agricultural systems

- Flow events last longer (2-3 weeks)
- Concentrations are high mainly at beginning of event
- Be sure to sample after peak where concentrations are receding but flows are still elevated.

- Urban systems

- Flashy (a few days)
- Concentrations recede with flow
- Need to sample numerous storm events per year

Sampling effort

- Refrigerated autosamplers (2)
 - Avalanche ISCO
 - ~\$9000 for Avalanche
 - \$2500 for shelter
 - \$50 per sample
 - (TP, orthophosphate, TSS, chloride)
 - Almost 1500 samples collected
 - 26 storm events characterized
- Staff time
 - 6-10 hours per week X 2 persons
 - = 100-150 staff days per year
 - For 2 autosamplers

Challenges - Autosampler

- Installation

Housing, power, intake

- Seasons

Cooling, heating

- Timing

Capture event

- Sampling failure

- Gaps!
- 8 days at HL
- 20 days at BV

Challenges - Autosampler

- Installation

Housing, power, intake

- Seasons

Cooling, heating

- Timing

Capture event

- Sampling failure

- Gaps!
- 8 days at HL
- 20 days at BV

- Swirl sample to pour
- Set program
- Align bottle tray
- Position distributor arm
- Hit Run!
- Documentation (field notes)

Challenges - Autosampler

- Installation
 - Housing, power, intake
- Seasons
 - Cooling, heating
- Timing
 - Capture event
- Sampling failure
 - Gaps!
 - 8 days at HL
 - 20 days at BV

- Maintenance (clean, tubing)
- Volume calibration
- Ice at intake line
- Frozen samples
- Biofouling (amphipods)
- Capture events, on weekends too!
- Work with the quantity of bottles available
- Don't forget to pick up the samples!

Challenges - Data Analysis

- Funding was delayed
 - Used allocation from our regular monitoring program
- Organizing, QCing chemistry data time consuming!
 - Remove samples (tests, comparisons)
 - Add in monitoring program samples
 - Documentation important
 - Consistent times (EST)

- Flow data

- Environment Canada
- Daily and high resolution QC'd data
- Three iterations of the data analysis!

Acknowledgments

- Funding Lake Simcoe Clean-Up Fund (LSCUF)
- Flow data Environment Canada
- Sample Analysis Maxxam Analytics, MOE
- LSRCA staff
 - Autosampler maintenance and sample collection
 - Sara Rawski, Chandler Eves, Ray Bolton, Kaitlin Bolton, Ryan MacLean, Rob Wilson, Melissa Moos, Brian Ginn
 - Data Management Sara Rawski
- MOE staff
 - Autosampler set-up Mike Mueller
 - Data Management Hamdi Jarjanazi

Suggestions?

Comments?

Lake Simcoe Region Conservation Authority • A Watershed for Life

35

Collection of samples

- Mondays and Thursdays plus events
- Composite samples for events
 - 2 samples per bottle, every 2 or 4 hours
 - 14 or 24 bottle rack
- Samples must go to lab before they expire
 - Submission and transportation
- Holland Landing site close to office
- Staff lived close to Beaver River site
- Incorporated into routine monitoring programs

Tributary Phosphorus Loads

- Loads: a function of flow and concentration
- Flow: measured continuously at a reasonable cost
- **Concentrations:** discrete samples
- Complete the load calculation for the periods between samples calculations/models

Loads are inherently difficult to quantify!

