ÉTUDE SUR L'ÉTAT DE SANTÉ DES SOLS AGRICOLES DU QUÉBEC

STUDY OF AGRICULTURAL SOIL HEALTH IN QUÉBEC

Marc-Olivier Gasser, soil scientist

Claude Bernard, soil scientist

REASONS FOR THIS STUDY

- Several indications that Québec soils are undergoing degradation
- No overall assessment of the situation since an Inventory of soil degradation problems, published in 1990
- IRDA was mandated by MAPAQ to conduct a new study on the health status of Québec agricultural soils.
- Generate recommendations for improved soil management and conservation measures, helping MAPAQ to define a strategy to promote soil health.

COMPARISON WITH THE 1990 INVENTORY

	1990 Inventory	New study
Studied soils	 164 soil series 1 800 000 ha covered Mineral soils 	 71 soil series covering 12 pedological regions 30 groups of series 758 000 ha covered Mineral and organic soils
Number of sites	 978 fields - monoculture or prairie (control or benchmark) 7 sampling points/field Total of 6 846 sampling points 	 426 fields 4 sampling points/field Total of 1 704 sampling points
Field method	 2 to 3 soil layers sampled Sampling over 3 growing seasons 	 2 to 3 soil layers sampled Sampling over 2 growing seasons Yields and agricultural practices documented for sampled fields

12 reports/administrative region + 1 general report

4

gc.ca

164 soil series divided in 3 groups

	Soil texture	Number of soils series	Number of sampled layers	n layers with cylinders (BD, macroporosity, water)
Group 1	Fine textures: Clay to sandy loam without coarse fragments	87	3	3
Group 2	Sandy soils with coarse fragments in deeper layers	56	2	0
Group 3	Glacial tills, sandy to silt loam with coarse fragments	21	2	0

5

Soil sampling depth

978 paired fields - sites

- Crop monoculture (corn, cereals, potato)
- Sod (control or benchmark soil)
- 7 sampling points/field
- Total of 6 846 sampling points x 2 or 3 sampled layers

Ste-Rosalie soil series

- heavy clay phase
- silt clay phase
- silt loam-clay loam phase

21 sites	sod (control)	cereals	corn
5 sites	2	2	1
4 sites	2		2
6 sites	2	2	2

8

irda gc.ca

STE-ROSALIE HEAVY CLAY PHASE CHEMICAL PROPERTIES

Descr	inteurs	-		Layer	1					Layer	2				L	ayer 3			
		Prair	ie	Mai	5	Céréa	ile.	Prair	ie	Mai	s	Céréa	le	Prair	ie	Mai	s	Céréa	ale
Année	1	7 - 1	2	8		3 -	3	7 - 1	2	8		3 -	3	7 - 1	2	8 - 1	0	3 -	3
pH		6,2	a	5,7	b	6,2	a	7.2	a	6,2	b	6,6	b	7.2	a	6.6	b	7.2	a
M.O. (%)	6,08	а	5,39	ab	4,64	b	1,57	b	3,14	а	2,03	ab	0.72	a	0.88	a	0.59	a
C/N		12,0	a	11,1	b	11,1	b	10,4	a	11.3	а	10,2	a	9,0	a	9.5	a	7.9	a
Ca éch	. (meq/100g)	12,26	а	11,26	a	12,21	а	12.83	a	10,64	a	11,49	a	10,07	a	10.53	а	10.44	а
Mg éci	h. (meq/100g)	6,73	a	6,52	a	7,44	а	8,73	a	7,00	a	8,10	a	7,90	a	8.22	а	8.58	а
K éch.	(meq/100g)	0,53	a	0,84	a	0,84	a	0,47	a	0.75	a	0.74	a	0.60	a	0.60	а	0.68	а
CEC	(meq/100g)	31,37	а	31,11	а	30,30	а	28,07	a	27,25	a	28,89	a	23.46	b	27.61	а	23.88	ab
Sat. ba	ISES (%)	61,8	a	60,7	а	67,6	а	81.7	a	68,5	b	74,5	ab	87.0	a	75.8	b	86.2	а
P	disponible ppm	20,1	b	51,8	a	26,4	b	7,6	b	26.3	а	20,6	а	9,1	а	12.6	a	8.5	a
Fe	disponible ppm	298,6	b	347,0	a	300,6	b	214.1	b	309,7	a	284,0	a	238.3	а	244.0	a	218.4	а
Mn	disponible ppm	11,74	b	16,19	b	29,16	а	14,23	b	11,63	b	30,28	а	24,95	b	21.01	b	71.18	а
Cu i	disponible ppm	2,52	а	1,58	a	1,82	а	2,33	a	1,22	a	1.76	a	2,53	a	1,76	a	2.28	а
B (disponible ppm	1,58	ab	1,36	b	1,82	a	1.60	a	1,21	b	1.72	a	1.66	a	1.20	b	1.64	а
Zn	disponible ppm	1,61	b	1.28	b	2,16	a	0,44	b	0,57	b	1.08	a	0.68	b	0.87	а	0.92	а
Mo a	disponible ppm	0,27	b	0,23	b	0,36	а	0,31	b	0,25	С	0.36	a	0.30	b	0.28	b	0.40	a
Co (disponible ppm	0,30	b	0,22	b	0,53	a	0,39	b	0,21	b	0.59	a	0,61	b	0.34	C	0.92	a
Cr (disponible ppm	0,58	ab	0,49	b	0,61	a	0,70	a	0,56	b	0,67	ab	0.74	ab	0.67	b	0.81	a
Pb a	disponible ppm	1,75	ab	1,29	b	2,17	a	1,23	b	0,80	b	1,80	a	1.17	а	0.84	a	1.64	a
Cd (disponible ppm	0,20	a	0,18	a	0,22	a	0,13	a	0,14	a	0,19	a	0,13	a	0.12	a	0.17	a

Seuil de probabilité: P ≥ 0.05.

Les lettres différentes à l'intérieur d'une même couche pour la combinaison couche-cultures, indiquent des valeurs significativement différentes.

STE-ROSALIE HEAVY CLAY PHASE PHYSICAL PROPERTIES

Descriptours		Hori	zon	1				Horizo	on 2		-		Но	orizon	3	-	
Descriptions	Prairie	Maïs	ł	Céré	le	Prair	ie	Mai	S	Céréa	le	Prain	rie	Mai	S	Céré	ale
Années	7 - 12	8		3 -	3	7 - 1	12	8	-	3 -	3	7 - 1	12	8 - 1	10	3 -	3
Sable (%)	6	8		8		8	-	9		6		8		9		5	
Limon (%)	31	33		36	i.	28	E.	36	j.	33	i.	31	k.	33	3	31	l.
Argile (%)	63	59		56	;	64	ł.	55	i	61		61	i.	58	3	64	4
Humidité (%)	43,8 b	48,7	a	46,5	ab	45,2	а	45,0	а	44,9	а	45,8	а	45,4	а	46,3	а
K (cm/hre)*	20,81 a	11.05	ab	8,60	b	0,52	а	2,88	а	1,67	а	1,27	а	0,63	ab	0,24	b
Dh (g/cm ₂)**	1,16 a	1,15	a	1.23	а	1,34	а	1,36	a	1,36	а	1,37	а	1,39	а	1,38	а
Porosité totale (%)	51,7 a	52,6	a	50,6	a	48,7	а	47,7	а	47,9	а	48,1	а	47,3	a	48,5	а
Macroporosité (%)	7,5 a	2,9	b	2,6	b	2,6	а	0,1	b	1,4	ab	1,7	a	1,1	а	0,7	а
Agrégats 8-5mm (%)	69,9 a	16.0	Ь	26,5	b	-		÷		+		-		-		÷	
Agrégats 5-2mm (%)	18,4 b	37,4	а	30,9	а	4		-		÷		-		-		7	
Agrégats 2-1mm (%)	3,4 b	13,5	a	11,9	а	-		÷		-		-		4		-	
D M P (mm)***	5,20 a	2,60	b	3,00	b	-		-		-		-		-		-	-

* K = Conductivité hydraulique

** D_b = Densité apparente

*** D M P (mm) = Diamètre moyen pondéré des particules

Seuil de probabilité: P ≥ 0.05.

Les lettres différentes à l'intérieur d'une même couche pour la combinaison couche-cultures, indiquent des valeurs significativement différentes.

STE-ROSALIE HEAVY CLAY PHASE

Serie SAINTE-ROSALIE argile lourde

Quelques caractéristiques des sols SAINTE-ROSALIE argile lourde Texture: argile lourde ou argile Drainage: mal drainé Topographie: plat Il y a acidification accrue sous monoculture de maïs dans les trois couches et sous monoculture de céréales dans la couche 2 (Tableau 2). Les pH mesurés varient de moyennement acides à neutres.

La teneur en matière organique dans la couche de surface est de niveau moyen sous prairie comme sous monocultures (Tableau 2) et significativement moins élevée sous monoculture de céréales. Le contenu en matière organique qui est de 145 t/ha sous prairie comparativement à 105 t/ha sous mais et 100 t/ha sous céréales traduit une diminution réelle de la matière organique.

Seuil de probabilité: P 2 0.05

TABLEAU 2 .: Propriétés chimiques des sols SAINTE-ROSALIE arglie lourde

Les teneurs en Ca, Mg, K et Cu sont indépendantes des cultures. Les autres éléments majeurs et mineurs varient de façon significative selon les cultures el la couche considérée (Tableau 2). Cependant, ils demeurent généralement à des niveaux utiles à la plante. Les teneurs en K sont excessives sous monocultures dans les trois couches étudiées et les teneurs en P sont plus élevées sous mais dans les couches 1 et 2 et sous céréales dans la couche 2. La teneur en Cd est indépendante des cultures; la teneur en Cr est plus faible sous maïs dans la couche 2.

RÉSULTATS ET DISCUSSION

En résumé, il y a dégradation de la structure, diminution de la matière organique et, dans les deux premières couches, surfertilisation en K sous monoculture de maïs et de céréales. De plus, les sols sont acidifiés sous monoculture de maïs.

Annees	1-15	đ	3-3	1-12	0	3-3	1-12	0 10	0.0
Sable (%)	6	8	8	8	9	Б	8	9	5
Limon (%)	31	33	36	28	36	33	31	33	31
Argila (%)	63	59	56	64	55	61	61	58	64
Humidité (%)	43,8 b	48.7 a	46,5 ab	45,2 a	45,0 a	44.9 a	45.8 a	45,4 a	46,3 a
K (cm/hre)*	20.81 a	11,05 ab	8,60 b	0.52 a	2,88 a	1,67 a	1,27 a	0,63 ab	0,24 b
Da (aloma)**	1,16 a	1,15 a	1,23 a	1,34 a	1,36 a	1,36 a	1,37 a	1,39 a	1,38 a
Poresité totale (%)	51,7 a	52,6 a	50.6 a	48,7 a	47,7 a	47,9 a	48,1 a	47,3 a	48,5 a
Macroperosité (%)	7,5 a	2,9 b	2,6 b	2,6 a	0,1 b	1.4 ab	1,7 a	1,1 a	0,7 a
Agrégats 8-5mm (%)	69,9 a	16,0 D	26,5 b	-	~	-			-
Agrégais 5-2mm (%)	18,4 b	37.4 a	30,9 a	-		-			8
Agrégats 2-1mm (%)	3,4 b	13,5 a	11,9 a	-	-	1.5	15		~
D M P (mm)+**	5.20 a	2,60 b	3,00 b	1.1	-	-	~		-

* K = Conductivité hydraulinue

** D_b = Densiti apparente

*** 0 M P immi = Diamétre moyen pondéré des particules

Seuil de protabilité P 20.05.

Les lettres diferentes à l'immeur d'une même couche pour la combinaison couche-cultures, indiquent des valeurs significativement différentes

_					_		_		_		_		_		_				_
Cd	disponible ppm	0.20	a	0.18	1	0,22	a	0.13	а	0.14	a	0,19	a	0,13	s	0,12	a	0.17	a
Pb	disponible ppm	1,75	ab	129	b	2,17	а	1.23	b	0.80	b	1,80	a	1,17	a	0,84	a.	1.64	đ
Cr	disponible ppm	0,58	alt	0,49	b	0,61	a	0,70	a	0,56	b	0,67	ab	0.74	abi	0,67	b	0.81	a
Cs	disponible ppm	0,20	b	0.22	b	0,53	a	0.39	b	0,21	b	0.59	a	0,61	D	0,34	C	0.92	a
Mo	disponible ppm	0,27	b	0,23	b	0,36	a	0,31	b	0,25	¢.	0,36	8	0,30	b	0,28	b	0.40	a
Zn	disponible nom	1,61	b	1.28	b	2.16	а	0.44	ь	0.17	0	1,08	a	0,68	ħ	0,87	8	0,92	а
8	disposible ppm	1,58	ab	1,36	b	1,82	а	1,60	а	1, 1	b	1,72	а	1,66	а	1,20	b	1.64	a
6.	disponible ppm	2.52	a	1.58	а	1,82	a	2.33	а	1, 2	а	1.76	а	2,53	a	1.76	a	2,28	ä
Ma	disponible ppm	11,74	D	16,19	b	29,16	a	14,23	b	11 63	t	30,28	а	24,95	b	21,01	Þ.	71.18	8 a
	nebourse bhu	230,0	0	347.0	cI	300,0	0	214,1	6	309,1	d	204,0	d	230,3	d	244,0	d	210,5	1 I.

Les lettres différentes à l'intérieur d'une même couche pour la combinancer couche-cultures, indig est des valeurs significativement différentes.

CUMULATING EIGHT (8) SOIL DEGRADATION PROCESSES EVALUATED AT THE REGIONAL LEVEL (12) BASED ON AREAS UNDER MONOCULTURE

Wind erosion

Region	Area under monoculture	Soil structure deterioration	Organic matter depletion	D Compaction	C Acidification	Over- Fertilization	Heavy metal pollution	Water erosion
1	18 670	18 320	1 525	7 900	5 780	9 480	4 570	2 060
2	22 030	17 550	5 660	4 000	10 900	9 760	4 090	6 460
3	4 320	2 925	770	250	1 265	1 440	540	250
4	59 100	53 540	33 310	11 240	22 510	23 825	6 560	2 550
5	16 010	12 220	2 650	1 070	4 900	2 540	2 380	6 530
6	153 200	141 300	100 020	27 060	73 400	114 410	2 270	3 840
7	102 420	96 000	65 280	28 1 4 0	42 590	84 655	15 600	6 960
8	10 530	8 400	1 920	2 400	6 850	5 035	600	2 250
9	2 300	2 000	260	1 700	1 240	1 700	1 040	600
10	65 000	52 300	31 700	7 930	19 600	43 840	5 630	9 300
11	17 800	14 850	6 000	5 1 6 0	8 7 4 0	8 175	1 940	3 7 4 0
12	14 410	9 1 5 0	2 970	3 950	9 580	3 330	2 675	1 380
Total	485 790	428 555	252 065	100 800	207 335	308 190	48 395	45 920

EIGHT SOIL DEGRADATION PROCESSES EVALUATED AT THE PROVINCIAL LEVEL

Figure 7: Envergure des phénomènes de dégradation des sols du Québec

irda gc.ca

de plus de 60 pour cent de la superficie sous monoculture. Qu'elle soit due à des apports excessifs de lisiers, de fumiers ou d'engrais chimiques, elle est non-justifiée et considérée comme un risque inutile pour la qualité de l'eau et de l'environnement. Ces éléments de diverses sources atteignent en effet les cours d'eau par écculement souterrain ou par ruissellement et, dans certains cas, par érosion du sol de surface. Les quantités entraînées sont fortement dépendantes à la fois des volumes d'eau en cause (ruissellement ou percolation) et de la concentration des éléments alors en surface ou dans le sol;

La diminution de la teneur en matière organique de plus de 50 pour cent des sols sous monoculture, davantage marquée sous cultures de pommes de terre et de maïs que sous céréales en dépit que les résidus de récolte soient retournées au sol dans le cas du mais-grain;

L'acidification qui se manifeste sur plus de 50 pour cent des sols sous monoculture, saul ceux sous pommes de terre, ils n'atteignent pas dans l'ensemble des niveaux inquiétants. Mais il faut être vigilant et de plus en plus attentif aux besoins d'amendements d'autant plus que les fertilisants ont un effet important dans ce cas-ci.

Le compactage affectant plus de 20 pour cent des sols en monoculture. Ce phénomène n'a pas été étudié pour les sols sableux de texture grossière (groupe 2 et 3) parce qu'il n'est pas considéré comme un facteur limitatif pour la production dans ces cas-cl;

La pollution par les métaux lourds de 10 pour cent de la superficie en monoculture. L'idée d'utiliser la norme teneur en Cr, en Pb ou en Cd échangeables sur au moins deux couches successives de sol est de dépister et de localiser les sites et les endroits où il y a augmentation de la teneur de ces éléments pour en rechercher les causes et les éliminer;

L'érosion hydrique sur 10 pour cent et l'érosion éolienne sur 6 pour cent des superficies en monoculture. Bien que l'érosion ne soit pas le phénomène qui a le plus d'envergure, il est certainement celui qui est le plus spectaculaire.

Figure 8: Envergure des phénomènes selon les régions agricoles

RECOMMANDATIONS

La prévention ou la mitigation des problèmes de dégradation des sols agricoles est possible de différentes façons. Les techniques les plus économiques sont souvent les plus appropriées telles la diminution du passage des engins et de la machinerie, le travail minimal du sol. l'utilisation rationnelle des fertilisants et des pesticides, etc. Le travail réduit allant jusqu'à l'absence de travail du sol peut s'avérer efficace dans certaines conditions, mais il n'est pas nécessairement désigné au renouvellement des prairies ou encore sur sols lourds. À chaque problème, sa solution.

Les moyens de prévenir ou d'atténuer le compactage se résument en une bonne gestion de la matière organique conjuguée à la rotation des cultures, surtout de plantes à racines profondes, au travail réduit du sol, à l'utilisation de pneus à basse pression, de roues doubles, à la diminution des passages et de la pression exercée par les engins en vue de favoriser le développement et le maintien d'une structure de qualité car la détérioration de la structure est un phénomène précurseur qui conduit souvent au compactage.

Pour contrer la délérioration de la structure, en plus des recommandations déjà mentionnées, les travaux doivent être exécutés dans de bonnes conditions d'humidité: éviter le passage de véhicules et d'engins lourds dans les champs en d'autres temps.

L'acidification, indiquée par la baisse du pH du sol, est attribuable au prélévement d'éléments basiques par les récoltes, à l'apport d'engrais à base d'azote ammoniacale et de soufre, à l'action des microorganismes et au lessivage d'éléments ajoutés.

La réaction ou pH du sol étant déterminante dans la solubilité des éléments minéraux et, de ce fait, dans la capacité des plantes à y puiser ce dont elles ont besoin, il importe de freiner l'acidification et de maintenir ou d'amener les sols à un pH optimum pour la croissance des plantes par l'apport d'amendements calcaires, chaulage, et l'usage rationnel des engrals chimiques qui ont une action acidifiante.

Le níveau de matière organique dépend de la texture du sol. Mais qu'importe, lorsqu'il est inférieur à 3,5 pour cent en sols légers et à 4,5 pour cent en sols lourds, il est considéré comme étant trop bas. On dit alors que le sol est pauvre en matière organique. L'apport sous forme de fumier, de résidus de cultures ou de compost est recommandé. Malgré tout, l'augmentation du pourcentage d'humus du sol est très lent. C'est pourquoi il est recommandé de pratiquer la rolation des cultures, surtout lorsqu'il s'agit de monoculture laissánt peu ou pas de résidu au sol telle la pomme de terre et, à un degré moindre le mais fourrager, pour favoriser le maintien d'un bon niveau de matière organique.

Sans compter qu'elle est l'une des principales sources d'azote et d'éléments mineurs utiles à la plante, la matière organique améliore la structure et la capacité de rétention de l'eau ce qui diminue les risques de compactage et d'érosion.

Le contrôle de l'érosion fait appel à diverses techniques de conservation. Les principales contre l'érosion hydrique sont la rotation des cultures, les cultures en bandes alternées, la culture en travers de la pente, la voie d'esu engazonnée, le bassin de captage, la bande riveraine et les terrases. Certaines de ces pratiques s'appliquent à l'érosion éolienne en plus des brisevent, de l'orientation des champs perpendiculairement aux vents dominants, des cultures-abri et du maintien de la couverture végétale ou de résidus ce cultures en surface. Le moyen le plus économique et le plus simple est encore

A NEW STUDY OF AGRICULTURAL SOIL HEALTH IN QUÉBEC

- 2017-2022
- 71 soil series in 30 groups
- Mineral and organic soils
- Groups based on 12 pedological regions, parental material and drainage class
- 1/3 soil series validated 2017 and sampled 2018
- 2/3 soil series validated 2018 and sampled 2019

PEDOLOGICAL REGIONS

ac.ca

STUDY OF AGRICULTURAL SOIL HEALTH IN QUÉBEC

- 71 soil series
- x 6 sites
 - 4 cultivated sites (annual or perennial)
 - 2 control (benchmark) sites (various)
- = 426 sites/fields

STUDY OF AGRICULTURAL SOIL HEALTH IN QUÉBEC

- Control site benchmark soil
 - Previously cultivated (Ap horizon developed) no soil under prime land - forest
 - Natural vegetation perennial plants (grass, shrubs, ...)
 - No rock or farm dump
 - High quality soil physical condition
 - Determined by soil surveyors
- Out of cultivation, old plant nursery, cultivated soil, under the fence row, orchard

STUDY OF AGRICULTURAL SOIL HEALTH IN QUÉBEC

- 4 sampling points/field-site
- x 426 sites
- = 1 704 sampling points
- 2 to 3 soil layers sampled
- Soils sampled during 2 growing seasons (May to July)
- Yields and cropping practices documented for every sampled fields

MEASURED PARAMETERS

- Visual and qualitative description of soil physical condition:
 - structure, porosity, stoniness, plant rooting, etc.
- Physical properties
 - particle size distribution, aggregate stability, bulk density, macroporosity, hydraulic conductivity, state of erosion Cs-137, shrinkage of organic soils
- Chemical properties
 - pH, cation exchange capacity, Mehlich-3 elements
- Biochemical properties
 - C N total (organic matter), active carbon, potentially mineralizable nitrogen
- Yields of fodder, grain and potato crops
- Copping practices over the past five years and other historical info

FIELDS LOCATED IN 2017 TO BE SAMPLED IN 2018

FULL SOIL PROFILE DESCRIPTION – 2017 CAMPAIGN

FULL SOIL PROFILE DESCRIPTION – 2017 CAMPAIGN

- I to 2 profiles per site
- By soil horizon
- Full morphological description (CanSIS)

Fiche descrip	otive du profil aj	gropédologique - PSEF	- Version 2016	-10-11		Page 1/2
SiteCode			Date			
Responsable of	e la description		Urgani	sme		
Coordonnées d	lu profil (x, y)	LAT				LONG
Type de sol		SOL_TYPE	Classe	de perméabilité	Perr	neabiliteClasse
M-Minéral		O- Organique	1-	Lente 2- Modér	ée 3-Rapide	
Classe de pente		PENT	Facteu	rs limitatifs	Fac	teursLimitatifs
2:06:2%	5-16-20 %	0.0.05%				
3-3-5 %	7-31-45 %	10-6-15 %				
4-6-9 %		11-10-30 %				
Type de pente		TYPP				CC01
1-Simple		2- Complexe	Nom d	e la série de sols		SERI
Exposition de la	apente	EXPP				
N-Nord	0-Ouest	SO- Sud-Ouest	Varian	e de la série de sols		VARI
E- Est	NE- Nord-Est	NO- Nord-Ouest				
S-Sud	SE- Sud-Est	H- Horizontale				
			Étude	le référence (comté)	ETUD
Pierrosite		PIER				
2-0.01/01/01	10-20m	4-3-10-5 (0.0-2m	P		Pa	marquer rite
3-0.1-3.0%;2	1-10m	6-≥ 50%;<0.1m	Kemar	ues pour le site	inc.	marques_site
Roccosité		ROCC				
1-<2%;>75	m	4-25-50%; 2-10m				
2-2-10%;25-	75m	5- 50-90% ; < 2m				
\$* 10*2575 (10	2-20m	8-3 9076				
Classe de drain	age	DRAI				
1- Très rapide	Ĩ	3- Imperfait				
2-Rapide		6- Mal drainé				
3-Bien		7- Très mai drainé				
4- Modéré			_			
Profondeur du	alex	PGLE				
	8~1	cm				
			Identif	ant des photos		PhotoID
Profondeur de:	s carbonates	PCAR				
I		cm				
	Derrá de dá	omnorition		Composition	hotanique (%)	
Fibre	es frottées (%)	Test de von Post	Amorphe	Sphaigne	Carex	Bois
NOC	FIB	VPT	AMO	SPH	CAR	BOI
1						
				1		<u> </u>
2						<u> </u>
3						
4						
5						

	Profa	indeur (cm)		Distinguistion	horizon	Tautura	Fr	agments gross	iers (%)
_	Supérieure	Interi	eure	Congristion		Texture	Te	tei	Classe
R.	L_SUP	L.	NF	HZN		TEX	н	GI	DFRG
	0	1					_		
		-					-		
		1 2 2 2							
							-		
21									
_	777			ra.etr	_	-			_
-	7-5% 13-1	19-AC	0.0	5 5-45-	45	5-Azvent		PGa	
	6-STP1 14-10	20- ALI	3-3	4% 7-55-	64 S.	2- Graviers fins & m	wyene (2-20 mm)		
	13-13 13-13A	23- A 22- ALD	3.2	524% 5-05-	54 S	3- Graviers grouple 3- Graviers (2 = 75	m(20-75 mm) mm)	5-Caloura	Plarren
	13-137 17-1A	23- Organique	42	534% 10-R	LOI N	4 Graviers & Callio		7- Merres (2	250
	12-13/1 16-104			>418 IP-R	-200 N	D- Call New (20 % 20	io mine	S- Marries a C	antour .
		Matrice	· · · · · · ·			Mar	brures		
	Teinte	Value	Chroma	Teinte	Couleur	Chroma	Abondance	Dimension	Contract
c	TB	VAL	CHR	MITE	MVA	MOH	MAB	NDI	MCO
61				-					1
1		C	1	1		1 1 1	1.1	1	0
						1		1	1
n li									
			_						8
511								1	1
-	_					-	-		-
				la Deutochina an	MAB		MO to Dette (channel		MCO
				2- Norders uses (2-3	in NI	- D	2-Moyanina (5-15.4	eit.	2- Distinct
				3- Trie contreases	[20-50 %]		3- Grande (205 mm		\$ fort
		-		-			1		
	Struct	ure	Consis-	Efferves-		Ren	narques à l'hor	izon	
1	Type Class	e Grade	tance	cence	_	_	Remaratives ha		
	SUL SUC						and the second second		
c	ទារ ទាល								
c	जा जा	-		-					
c	STT STC		-						
Ċ	आग आप								
c	<u>डा</u> जा								
c	SIT SIC								
c	STT STC								
c	STT STC	SIT		STC		٥TG	CON		84
c		STI		STC		STG and distance	CON 2-Media	D 15	ETT
c	517 510 517 510	STI STI Vo Gipa	0.5 2.7 2.7	510 ens ethicitiere dati Dara & Das	3-3	SIG an dudoe Note:s	CON 5-Media 3-Tria Mabi 5-Frailia	D 100	175 Note très fable Table
c	STT STC	STT Alts dis gis	0.5 5.7 5.7 5.7	STC ess structures als Druce Altres als from & Druce bet altres and the	31 31 31 41	SIG ana disclara antacita attis attis attis sociata	CON 5- Medite 3- Visit Ma3 5- Franks 5- Franks 5- Franks	0-15 - 15 - 15 - 15 - 15 - 15 - 15 - 15 -	275 Nule très tuble Yable Moderne

SOIL LANDSCAPES

Bellechasse – Série St-Bruno

St-Jean-Port-Joli – Série St-André

Montérégie – Série St-Aimé

Saguenay Lac-St-Jean – Série Taillon

Montérégie – Série Joseph

Ile d'Orléans – Série St-Nicolas

SAMPLING PATTERN ACROSS FIELD-SITE

4 sampling points/field-site To be sampled the next spring

ird

SOIL SAMPLING – 2018 CAMPAIGN

- 4 sampling points per field-site
- 2 3 soil depths
- Visual and qualitative description of soil physical condition (CanSIS, VESS)

Formulaire Point d'écha	ntillo	nnage					Description visuelle	du profil (suit	e)				
Identification													
							Désignation de l'horizo	on	Ap1	Ap2	В	Commentaires	
Identifiant du site:				Ident	ifiant du point d'échantillonnage:	_	Numéro de la couche		1	2	3		
							Profondeur (cm)	Supérieure	0	10			
Chef d'équipe:		In	itiales:		Date (jj-mm-aaaa):			Inférieure	10				
							Description visuelle						
Aspects de la surface							Présence de graviers (2	2 à 75 mm)			2		
Position sur la pente	Posi	tion sur une planche ar	rondie:		Position n/r aux drains souterrains		Présence de cailloux (7	5 à 250 mm)			<u> </u>		
			ronaic.	-			Presence de pierre (> 2	50 mm)					
1 Crete	1	Ne s'applique pas		-	1 Drains inexistants		Presence de marbrures		-	-			
2 Haut de pente	2	Haut de planche		-	2 Drains non visibles		Type de structure (grad	te 0 a 9)					
3 Milieu de pente	3	Milieu de planche		4	3 Moins d'un m du drain		Classe de structure (gra	ade 0 a 8)					
4 Bas de pente	4	Bas de planche			4 Entre deux drains		Grade de structure (gra	ade 1 a /)					
5 Pied	Turn	de végétetien neéseet			Dugasité da la sugfasa du salu		Porosite (grade 1 a /)						
6 Dépression	Type	e de vegetation present	te: _		Rugosite de la surface du sol:		Consistance (grade 1 a	5)					
7 Plat ou à niveau	1	Sol nu sans végétatio	n	1	Végétation sur sol plat		EVSS (grade 1 à 5)						
8 Autre :	2	Culture annuelle		2	Pâturage piétiné		Humidité (grade 1 à 3)						
Érosion hydrique:	3	Pâturage		3	Végétation sur sol renchaussé		No. de photo de motte	désagrégée					
Eresten infandae: 2	4	Prairie de graminées		4	Sol nu avec résidus de culture								
1 Non visible	5	Prairie mixte		5	Sol nu non travaillé sans résidus		Sol en vrac (labo)						
2 Modérée	6	Prairie de légumineu	ses	6	Sol nu avec traces de semoir		Code		LB	LB	LB		
3 Forte	7	Végétation arhustive		7	Sol nu avec travail réduit ou saro	dé	Profondeur (cm)	Supérieure	0	10			
4 Quelques ravins	8	Autre :		8	Sol nu renchaussé avec buttons			Inférieure	10				
5 Nombreux ravins		Aute		9	Sol nu labouré au chisel		Sol en vrac (Inventaire	Cs)					
6 Autre :				10	Sol nu labouré à la charrue		Code			CS			
				11	Autre :		Profondeur (cm)			0 – 55 cm	1		
					And Comments		Motte pour stabilité d	es agrégats					
No de photo de la surface du	ı sol 🔔			Fert	ilisation récente (printemps):		Code		SA				
				1	Das de fertilisation au printemp	-	Profondeur (cm)	Supérieure	0				
				1	Pas de ler tillsation au printemps	<u> </u>		Inférieure	10				
				2	Engrais organique	_	Cylindres pour MVA et	t macroporosité					
				3	Engrais mineral en bande	_	Code MVA		MV	MV	MV		
Description visualle du	nrofil			4	Engrais mineral a la voiee	_	Code macroporosité		MA	MA	MA		
Description visuelle du	prom			5	Autre	_	Profondeur (cm)	Supérieure	0				
Épaisseur de l'horizon Ap1 (le cas é	chéant): cm		6	Ne sais pas			Inférieure					
Épaisseur de l'horizon Ap ou	I Ap2: .	cm					Dormóomòtro do Guel	nh	1				
No de photo de l'horizon Ap	en pro	ofil					Profondour infóriouro	(m)	+	45		-	10
				Signar	de compaction		Protondeur interleure	(cm)		15			HU
				Signes	ue compaction		Constants	(2° externe)	+				
Présence de couche compac	te limi	tante:		1 H	prizon dur à pénétrer avec le coute	eau	Houtour de colonne d'		+				
				2 H	orizon gris-bleu		nauteur de colonne d'i	can (2 on 10 cm)	To	mor	Hautour	Tompo	Hautour
Desfer dave (m)				3 Ra	cines déviées				(min	(rec)	(mm)	(min sec)	(mm)
Protondeur (cm)				4 Ag	régats difficiles à briser		1 titt lesture stable		(min	.secj	(mm)	(min.sec)	(mm)
superieure inférieu	ire Si	gnes de compaction		5 Tr	ès faible porosité		1 lecture stable		+				
1		·····		6 Au	itre :		2 recture stable		+				
17						1	5 ecture stable		1			1	1

Γ		Profondeur (cr	n)	
Γ		supérieure	inférieure	Signes de compaction
Γ	1			<u></u>
[2			

SOIL SAMPLING – 2018 CAMPAIGN

• 2 - 3 soil sampling depths

Bulk soil sample - 10 to 15 cm thickness

Hydraulic conductivity – Guelph permeameter 15 and 40-cm depth
 Aggregate stability: 5 diameters + MWD
 Cs-137 inventory on a 55-cm soil cylinder

SOIL SAMPLING – 2018 CAMPAIGN

CROP YIELDS MEASURED DURING THE SEASON

- Fodder (grass, legumes and silage corn), grains (corn, cereals, soya, canola) and potato crops
- Measured at four sampling points

CROPPING PRACTICES SURVEY

• Cropping practices over the past five years and other historical info

2018-2019 CAMPAIGN

- 2/3 of following soil series
- Soil series Validation (spring and fall 2018)
- Soil Sampling (spring 2019)
- Cropping practices survey (fall 2019)

ANALYSE AND PUBLISH RESULTS

• 2019 - 2022

1- STUDY OF QUÉBEC AGRICULTURAL SOIL HEALTH

2- STUDY OF AGRICULTURAL SOIL HEALTH IN QUÉBEC

3- A SOIL HEALTH STUDY OF QUÉBEC AGRICULTURAL SOILS 4-...

Marc-Olivier Gasser, soil scientist

Claude Bernard, soil scientist

USE OF 1990 INVENTORY DATA

Figure 3 : Relation entre l'érodabilité mesurée sous prairie et sous culture annuelle

Bernard, C. 1996. Estimation de l'érodabilité des principales séries de sol du Québec, à l'aide du nomographe de Wischmeier. Agrosol 9(2):6-12.